Influence of ZIP14 (slc39A14) on intestinal zinc processing and barrier function.

نویسندگان

  • Gregory J Guthrie
  • Tolunay B Aydemir
  • Catalina Troche
  • Alyssa B Martin
  • Shou-Mei Chang
  • Robert J Cousins
چکیده

ZIP14 is a zinc transport protein with high expression in the small intestine and liver. Zip14 is upregulated during endotoxemia and leads to increased liver zinc content and transient hypozinemia. Since body zinc status and inflammation are associated with changes in intestinal permeability, we hypothesized that ZIP14 may influence intestinal permeability. Wild-type (WT) and Zip14 knockout (KO) mice were used to determine ZIP14-associated intestinal zinc metabolism and effects on permeability. Fractionation of plasma membranes revealed that ZIP14 is localized to the basolateral membrane of enterocytes. Studies utilizing (65)Zn administered by subcutaneous injection revealed greater zinc accumulation in the SI of Zip14 KO mice compared with WT mice. Isolation of endosomes confirmed the presence of ZIP14. Quantification of endosomal zinc concentration by FluoZin-3AM fluorescence demonstrated that zinc is trapped in endosomes of Zip14 KO mice. Intestinal permeability assessed both by plasma FITC-dextran following gavage and by serum endotoxin content was greater in Zip14 KO mice. Threonine phosphorylation of the tight junction protein occludin, which is necessary for tight junction assembly, was reduced in KO mice. Claudin 1 and 2, known to have an inverse relationship in regards to tight junction integrity, reflected impaired barrier function in KO jejunum. These data suggest involvement of ZIP14 in providing zinc for a regulatory role needed for maintenance of the intestinal barrier. In conclusion, ZIP14 is a basolaterally localized protein in enterocytes and is involved in endosomal trafficking of zinc and is necessary for proper maintenance of intestinal tight junctions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CALL FOR PAPERS Physiology and GI Cancer Influence of ZIP14 (slc39A14) on intestinal zinc processing and barrier function

Guthrie GJ, Aydemir TB, Troche C, Martin AB, Chang S, Cousins RJ. Influence of ZIP14 (slc39A14) on intestinal zinc processing and barrier function. Am J Physiol Gastrointest Liver Physiol 308: G171–G178, 2015. First published November 26, 2014; doi:10.1152/ajpgi.00021.2014.—ZIP14 is a zinc transport protein with high expression in the small intestine and liver. Zip14 is upregulated during endot...

متن کامل

Gene expression of the zinc transporter ZIP14 (SLC39a14) is affected by weight loss and metabolic status and associates with PPARγ in human adipose tissue and 3T3-L1 pre-adipocytes

BACKGROUND The expansion and function of adipose tissue are important during the development of insulin resistance and inflammation in obesity. Zinc dyshomeostasis is common in obese individuals. In the liver, zinc influx transporter ZIP14, affects proliferation and glucose metabolism but the role of ZIP14 in adipose tissue is still unknown. This study investigates ZIP14 gene expression in huma...

متن کامل

Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells.

Zip14 is a member of the SLC39A zinc transporter family, which is involved in zinc uptake by cells. Up-regulation of Zip14 by IL-6 appears to contribute to the hepatic zinc accumulation and hypozincemia of inflammation. At least three members of the SLC39A family transport other trace elements, such as iron and manganese, in addition to zinc. We analyzed the capability of Zip14 to mediate non-t...

متن کامل

Interleukin-1beta contributes via nitric oxide to the upregulation and functional activity of the zinc transporter Zip14 (Slc39a14) in murine hepatocytes.

Zinc metabolism during chronic disease is dysregulated by inflammatory cytokines. Experiments with IL-6 knockout mice show that LPS regulates expression of the zinc transporter, Zip14, by a mechanism that is partially independent of IL-6. The LPS-induced model of sepsis may occur by a mechanism signaled by nitric oxide (NO) as a secondary messenger. To address the hypothesis that NO can modulat...

متن کامل

Zinc dyshomeostasis during polymicrobial sepsis in mice involves zinc transporter Zip14 and can be overcome by zinc supplementation.

Integrity of the immune system is particularly dependent on the availability of zinc. Recent data suggest that zinc is involved in the development of sepsis, a life-threatening systemic inflammation with high death rates, but with limited therapeutic options. Altered cell zinc transport mechanisms could contribute to the inflammatory effects of sepsis. Zip14, a zinc importer induced by proinfla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 308 3  شماره 

صفحات  -

تاریخ انتشار 2015